Willkommen, Gast
Benutzername: Passwort: Angemeldet bleiben:

THEMA:

Kann Mathematik wirklich das reale Universum erklären? 09 08. 2017 20:38 #18393

  • L.Nikolaus.B
  • L.Nikolaus.Bs Avatar
  • Offline
  • Forum Neuling
  • Forum Neuling
  • Was schreib ich da? 1) Ich bin kein Roboter.
  • Beiträge: 49
  • Dank erhalten: 4
Hallo Merlix,
hallo Denobio,

ich wünsche euch einen guten Abend.

"Denobio schrieb: Und wenn du meinst, diese mathematischen Gesetze beschreiben die Natur unzulänglich und ungenau, dann sage mir ein Messverfahren, dass mir diese Unzulänglichkeit nachweist (und sage mir vorher ein Normal gegen das Du messen willst)."

1) Mathematische Gesetze haben nicht die Zielsetzung die Natur zu beschreiben.
2) Mathematische Gesetze werden durch ein Beweisverfahren mit Schluss von den Axionen zu den Sätzen bewiesen, sofern der Beweis durchführbar ist.
3) Mathematische Gesetze können nicht durch ein Messverfahren (Experiment) widerlegt werden.

4) Physikalische Gesetze können durch ein Experiment bestätigt bzw. wiederlegt werden.

Hier muss man schon eine begrifflich exakte Trennung zwischen Mathematik und Physik einhalten, auch wenn die Mathematik die wichtigste "Hilfswissenschaft" in der Phsik ist.

Dipl.-Ing. (FH) Physikalische Technik

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Dipl.-Ing. (FH) Physikalische Technik

Kann Mathematik wirklich das reale Universum erklären? 09 08. 2017 21:00 #18394

  • L.Nikolaus.B
  • L.Nikolaus.Bs Avatar
  • Offline
  • Forum Neuling
  • Forum Neuling
  • Was schreib ich da? 1) Ich bin kein Roboter.
  • Beiträge: 49
  • Dank erhalten: 4
Hallo Denobio;

ich grüße Dich.

"Aber ich bin mir auch sicher, dass bei solchen und ähnlichen Fragen nur mitreden kann, wenn man vielschichtig, nämlich mathematisch, naturwissenschaftlich und geschichtswissenschaftlich-philosophisch tief gebildet ist.
Sonst ist alles nur Küchengeschwätz. Natürlich ist Küchengeschwätz für viele ein angenehmer Zeitvetreib."

Mathematik und Physik sind faszinierende Wissenschaften, jeder soll daran teilhaben dürfen, unabhängig von seinem Bildungsstand. Du grenzt mit Deinem Statment alle nicht wissenschaftlich gebildeten Menschen aus.

ich glaube, dass man das nicht machen sollte. Diese Web Site und das Forum wurden doch von den Herren Lesch und Gaßner gegründet um einer breiten Interessensgemeinschaft den Zugang zu Naturwissenschaften zu ermöglichen und die Fastination der Pysik rüberzubringen.

Man kann vieles durch anschauliche Beschreibungen erläutern. Höhere Mathematik würde vermutlich viele abschrecken.

Dipl.-Ing. (FH) Physikalische Technik

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Dipl.-Ing. (FH) Physikalische Technik

Kann Mathematik wirklich das reale Universum erklären? 09 08. 2017 21:25 #18395

Hallo L.Nikolaus.B,

Das mit der "begrifflich exakten Trennung zwischen Mathematik und Physik" sehe ich doch ein wenig anders.

Dass zunächst "rein mathematisch" entstandene Theorien, wie z.Bsp. die Differentialgeometrie und die Funktionalanalysis, sich plötzlich als schlichtweg passend für neue physikalische Theorien wie die Relativitäts- und die Quantentheorie erwiesen haben und sich mit ihrer Hilfe viele neue Effekte vorhersagen ließen, lange bevor sie beobachtet wurden, das muss einen doch sich erst einmal wundern und dann nach einer tieferen Beziehung zwischen Mathematik und Physik fragen lassen, so wie viele große Physiker (Einstein, Wigner, Dirac und Co.) es ja auch immer wieder getan haben.

Gruß,
Lulu

Wer mit hinreichendem Denkvermögen analysieren könnte, unter welchen Bedingungen die Erfahrung überhaupt möglich ist, der müsste zeigen können, dass aus den Bedingungen bereits alle allgemeinen Gesetze der Physik folgen. Die so herleitbare Physik wäre gerade die vermutete einheitliche Physik. (Carl Friedrich von Weizsäcker, 1967)

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Wer mit hinreichendem Denkvermögen analysieren könnte, unter welchen Bedingungen die Erfahrung überhaupt möglich ist, der müsste zeigen können, dass aus den Bedingungen bereits alle allgemeinen Gesetze der Physik folgen. Die so herleitbare Physik wäre gerade die vermutete einheitliche Physik. (Carl Friedrich von Weizsäcker, 1967)

Kann Mathematik wirklich das reale Universum erklären? 09 08. 2017 21:42 #18397

  • Ropp
  • Ropps Avatar
  • Offline
  • Forum Meister
  • Forum Meister
  • Beiträge: 624
  • Dank erhalten: 179

Lulu schrieb: Hallo L.Nikolaus.B,

Das mit der "begrifflich exakten Trennung zwischen Mathematik und Physik" sehe ich doch ein wenig anders.

Dass zunächst "rein mathematisch" entstandene Theorien, wie z.Bsp. die Differentialgeometrie und die Funktionalanalysis, sich plötzlich als schlichtweg passend für neue physikalische Theorien wie die Relativitäts- und die Quantentheorie erwiesen haben und sich mit ihrer Hilfe viele neue Effekte vorhersagen ließen, lange bevor sie beobachtet wurden, das muss einen doch sich erst einmal wundern und dann nach einer tieferen Beziehung zwischen Mathematik und Physik fragen lassen, so wie viele große Physiker (Einstein, Wigner, Dirac und Co.) es ja auch immer wieder getan haben.

Gruß,
Lulu


Sehe ich ähnlich. Wir schauen auf eine Wirklichkeit bestehend aus Raum, Körpern und deren Bewegung im Raum. Distanzen, Kanten usw. Da liegt für mich nahe, sich mit Geometrie zu behelfen, wenn man für das ein oder andere eine treffende Beschreibung und passende Begriffe gefunden hat. Und ist man erst soweit, kann man vielleicht eine Prediktion für kommendes Geschehen her ferkeln. :-)

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Kann Mathematik wirklich das reale Universum erklären? 09 08. 2017 21:51 #18398

  • L.Nikolaus.B
  • L.Nikolaus.Bs Avatar
  • Offline
  • Forum Neuling
  • Forum Neuling
  • Was schreib ich da? 1) Ich bin kein Roboter.
  • Beiträge: 49
  • Dank erhalten: 4
Hallo Lulu,

ich wünsche Dir einen guten Abend. Da stimme ich Dir voll zu, selbstverständlich haben sich manche mathematische Theorien erst entwickelt, weil sich physikaliche Fragestellungen ergeben haben. Die beiden Wissenschaften haben sich immer gegenseitig beinflusst. Die naturwissenschaftlichen Fragestellungen wurden immer kompexer, sodass auch die mathematischen Modelle entsprechend weiterentwickelt werden müssen.

Aber der Moderator hat's eh schon auf den Punkt gebracht, dass Mathematik eine Strukturwissenschaft ist und insofern von den Beweisen "lebt".

Dipl.-Ing. (FH) Physikalische Technik

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Dipl.-Ing. (FH) Physikalische Technik

Kann Mathematik wirklich das reale Universum erklären? 09 08. 2017 21:59 #18399

Hallo Lulu,

Naja, der Heisenberg hatte zur Lösung seiner physikalischen Vorstellung die Matrizenmechanik herangezogen. Der Schrödinger fand dann seine Schrödingergleichung und der Feynman seine Wegintegrale.
Der Einstein und sein Freund Grossmann suchten im Baukasten der Mathematik nach einer mathematischen Beschreibungsmöglichkeit von gekrümmten Geometrien und fanden Krümmungstensoren.
Insofern ist die Mathematik als Sprache eine Fundgrube für die Physik .
Ich geb dir aber recht, wenn du bemerkst, dass die Mathematik mehr sein könnte als nur eine Fundgrube für die Physiker.
Vor allem die Erfolge aus der Mathematik der Symmetriegruppen in der Physik geben gewaltig Anlass zum Nachdenken.

Grüße
Thomas

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Kann Mathematik wirklich das reale Universum erklären? 09 08. 2017 22:21 #18400

Hallo Nikolaus B.,

Kleine Richtigstellung zum Verhältnis zwischen Mathematik und Physik.

Die Mathematik ist keine Hilfswissenschaft für die Physik. Sie ist völlig eigenständig und geht ihren eigenen Fragestellungen nach, aufgeteilt in viele Disziplinen.
Dass manche Mathematiker ins Gebiet der Physik schauen und umgekehrt, ist dabei selbstverständlich, da beide symbiotisch miteinander korrespondieren.

Aber bitte beachten: die Mathematik ist eine absolut eigene Wissenschaft, im übrigen die abstrakteste, über die wir Menschen verfügen.

Grüße
Thomas
Folgende Benutzer bedankten sich: egonotto, L.Nikolaus.B

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Kann Mathematik wirklich das reale Universum erklären? 10 08. 2017 07:48 #18404

  • L.Nikolaus.B
  • L.Nikolaus.Bs Avatar
  • Offline
  • Forum Neuling
  • Forum Neuling
  • Was schreib ich da? 1) Ich bin kein Roboter.
  • Beiträge: 49
  • Dank erhalten: 4
Hallo Thomas,

vielen Dank für Deine Richtigstellung. Stimme Dir voll zu. Selbstverständlich ist die Mathematik eine absolut eigenständige Wissenschaft. Für die Physik ist aber die Mathematik ein absolut unentbehrliches "Hilfsmittel", man könnte auch "Werkzeug" sagen, Das wollte ich eigentlich mit "Hilfswissenschaft" zum Ausdruck bringen.

Für mich ist Physik ohne Mathematik nicht "vorstellbar", im Sinne, dass man die Natur nicht so exakt beschreiben könnte, hätte man dieses "ideale" Werkzeug nicht.

Grüße
L.Nikolaus.B

Dipl.-Ing. (FH) Physikalische Technik

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Dipl.-Ing. (FH) Physikalische Technik

Kann Mathematik wirklich das reale Universum erklären? 10 08. 2017 12:20 #18414

Hallo Thomas, Obwohl mir viele vor Ort bestätigen, ich sei abstrakt. Jedoch Mathematik als "Abstrakteste Wissenschaft" zu bezeichnen nur weil es Abstraktion in einigen Bereichen verwendet, ist mir nicht begreifbar, unglaublich. Ich habe das starke empfinden in Kunst kommt Abstraktion viel, sehr viel häufiger vor in form der Improvisation, liege ich da falsch?...naja auch ich liege mal daneben.
Mathematik ist für mich reine Äquivalenz Arbeit in alle Richtungen. Ich empfinde hierbei nix abstraktes: \(\forall x\forall y\ (K(x)\land K(y)\rightarrow (a(x)=a(y)\leftrightarrow x\thicksim y)) \) oder bei ½+½=1≠2. Wie ist bezogen auf Mathematik die als Abstrakte Wissenschaft betrachtet wird, das Wort abstrakt nun zu verstehen? es misslingt mir sehr die Logik hier zu verdrängen. Irgendwo missverstehe ich etwas.

Ja ich kann alles, sogar definieren was ich nicht kann.

Man muss noch Chaos in sich haben, um einen tanzenden Stern gebären zu können.
**Der Friedrich**

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Ja ich kann alles, sogar definieren was ich nicht kann.

Man muss noch Chaos in sich haben, um einen tanzenden Stern gebären zu können.
**Der Friedrich**

Kann Mathematik wirklich das reale Universum erklären? 10 08. 2017 13:32 #18416

"Abstrakt" ist Mathematik, weil man damit mit Minuswerten rechnen kann, z. B. auf einem Konto (meinem, sehr oft) werden die Summen immer größer, je mehr Geld ich abhebe, das ist Abstraktion vom Feinsten, denn "Minusgeld" gibts in der Realität nicht.

Ebenso erlaubt die abstrakte Mathematik den Begriff der Unendlichkeit, obwohl wir doch alle wissen, dass es in einem endlichen Raum niemals Unendlichkeit geben kann.

Die Mathematik ist DAS Hilfsmittel der Physik, gäbe es sie nicht, man müsste sie erfinden (haben die Wissenschaftler von Galilei über Newton und Einstein ja bis nahezu heute so gemacht, machen müssen).

Die schönste Formel nützt aber leider gar nichts, wenn man ihre Aussagen nicht irgendwann mal real verifizieren kann. Bei E = mc² hat das ja mit der Kernspaltung geklappt, bei sämtlichen Stringtheorien wartet man noch auf Beweise.

Grüße
Udo

Das Verzichtbare ist nutzlos. J.F. Hingeklammert

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Das Verzichtbare ist nutzlos. J.F. Hingeklammert

Kann Mathematik wirklich das reale Universum erklären? 10 08. 2017 14:50 #18419

  • Denobio
  • Denobios Avatar
  • Besucher
  • Besucher
Chris, Thema abstrakte Kunst. Da weiß ich zufällig ein paar Sachen.
In der bildenden Kunst kam Anfang des 20. Jahrhunderts die sogenannte "abstrakte Kunst" auf. So wird sie landläufig genannt. Genau müsste man "gegenstandslose Kunst" sagen. Gute Kunst ist seit jeher, ob alte Griechen, Miittelalter, oder Renaissance, abstrakt. In dem Sinne, dass sie von der Natur abstrahiert. Das ist so, wenn auch manchem Betrachter eines alten Bildes dies gar nicht auffällt. Gute bildende Kunst ist ohne Abstraktion in diesem Sinne gar nicht denkbar.
Grüße Denobio

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Letzte Änderung: von Denobio. (Notfallmeldung) an den Administrator

Kann Mathematik wirklich das reale Universum erklären? 10 08. 2017 16:50 #18422

Abstrakt als Adjektiv steht für: Abstraktion, den induktiven Denkprozess des Weglassens von Einzelheiten und des Überführens auf etwas Allgemeineres oder Einfacheres. die Eigenschaft eines Abstraktums, etwas Nichtgegenständlichen. Abstraktion (Informatik), die Trennung zwischen Konzept und Umsetzung.

S = k log W

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

S = k log W

Kann Mathematik wirklich das reale Universum erklären? 10 08. 2017 16:57 #18423

Hi Chris

....da hat schon mal einer nach gesucht:
www.brandeins.de/archiv/2011/rechnen/eins-bis-tod/

Könnte man nicht sagen: wir haben mit der Expansion der Raumzeit ein Abstraktum dessen Konkretum noch nicht definiert ist?

schwierig :dry:
viele Grüße
seb

Mein Beitrag zur Rebellion gegen bestehende Verhältnisse? Ich gehe ständig zu spät zum Frühsör!

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Mein Beitrag zur Rebellion gegen bestehende Verhältnisse? Ich gehe ständig zu spät zum Frühsör!

Kann Mathematik wirklich das reale Universum erklären? 03 03. 2020 19:37 #66126

Ropp schrieb: Wir schauen auf eine Wirklichkeit bestehend aus Raum, Körpern und deren Bewegung im Raum. Distanzen, Kanten usw. Da liegt für mich nahe, sich mit Geometrie zu behelfen, wenn man für das ein oder andere eine treffende Beschreibung und passende Begriffe gefunden hat.


Ja schon, aber warum liegt das eigentlich nahe? Denke, es ist einfach ein gewisses Vertrauen, das wir inzwischen in die Mathematik haben, weil sie sich schon in so vielen Fällen als nützlich erwiesen hat. Ich sehe es so:

Grundlage der Mathematik ist quasi eine Kiste von Bausteinen, die man zunächst analog zur erkennbaren "Wirklichkeit" und zum eigenen Denken (Zahlen, Linien, Flächen, Logik) hergestellt hat. Damit modellieren Mathematiker dann eine Vielzahl von Gebilden, sogar ohne die genaue Beschaffenheit jedes einzelnen Bausteins wirklich zu kennen, wie z.B. des Zahlenstrangs mit den Primzahlen, deren genaue Verteilung ihnen nach wie vor unbekannt ist.

Diese mathematischen Gebilde erheben nicht zwingend den Anspruch auf eine Entsprechung in der Wirklichkeit, ebenso wenig wie das von einem Kleinkind spielerisch mit Lego zusammengesteckte Dingens, angesichts dessen man fragen mag: Was soll das sein? Die Frage kann man sich sparen. Es ist einfach was es ist, irgend ein Gebilde halt, das aus den vorhandenen Grundbausteinen besteht und in sich hält. Es wurde nicht gebaut um etwas bestimmtes darzustellen ausser sich selbst.

Der einzige Grund, warum sich die Natur oft mathematisch beschreiben lässt ist anscheinend, dass eben die Grundbausteine der Mathematik der erfahrbaren "Wirklichkeit" entnommen sind. Die Vorstellung von natürlichen Zahlen z.B. ergibt sich unmittelbar aus der Erfahrung, ebenso wie die Vorstellung, dass diese eine natürliche Reihenfolge haben; z.B. bedeuten zwei Beutetiere mehr Jagdaufwand als eins und drei wiederum mehr als zwei. Das leuchtet unmittelbar ein und die Erfahrung hat gezeigt, das es anscheinend immer und überall so ist.

Aber dürfen wir wegen einiger oder meinetwegen auch vieler erkannter Zusammenhänge zwischen Mathematik und Natur einfach vertrauensvoll voraussetzen, dass sich alles in der Natur mathematisch beschreiben lässt? Haben wir unsere Mathematik und ihre mögliche Entsprechung in einer vorausgesetzten, allgemein gültigen Wirklichkeit überhaupt genügend verstanden? Da wird's philosophisch und ich habe so meine Zweifel...

Beispiel Geometrie:

Seit Euklid oder so denkt man sich Linien als unendliche, kontinuierliche Aneinanderreihung von Punkten ohne eigene Ausdehnung. So kann man Strecken messen und ins Verhältnis setzen zu anderen im Dreieck usw. Das ist schön und gut solange man nicht wirklich hinschaut: Schon Zenon von Elea hat doch mit seinen Paradoxien die Vorstellung der unendlich vielen, kontinuierlichen Punkte für die Wirklichkeit ad absurdum geführt. So kann es nicht wirklich sein.

Klar darf man beim Paradoxon Achilles und die Schildkröte rein mathematisch argumentieren, dass auch eine unendliche Reihe eine endliche Summe haben kann, aber diese "Lösung" bleibt völlig innerhalb unserer künstlichen Mathematik und ist daher m.E. nicht ohne weiteres gültig für eine physikalische Wirklichkeit, die Zenon anscheinend im Blick hatte.

Jedenfalls kann ich mir ebenso wenig wie Zenon vorstellen, dass es möglich sein soll, unendlich viele reale Punkte tatsächlich der Reihe nach zu besuchen, und nach dem Überholen sogar noch mehr Punkte als die Schildkröte, die ja inzwischen auch schon unendlich viele besucht hat. Das übersteigt nun wirklich jede Vorstellung und widerspricht jeder Erfahrung. Es ist und bleibt daher für mich ein Paradoxon, auch wenn Mathematiker (womöglich auch Physiker) Zenons Argument als Trugschluss entlarvt haben wollen :whistle:.

Die Lösung liegt vielleicht irgendwo innerhalb der Plancklänge verborgen, wo Raum und Zeit statistisch verteilte Kapriolen machen. Ob wir das jemals rausfinden?

Also sprach das Photon: Wo wir sind ist vorne! Und sollten wir mal hinten sein, dann ist hinten vorne!

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Also sprach das Photon: Wo wir sind ist vorne! Und sollten wir mal hinten sein, dann ist hinten vorne!
Letzte Änderung: von Steinzeit-Astronom. Begründung: Duden Stil und Formatierung (Notfallmeldung) an den Administrator

Kann Mathematik wirklich das reale Universum erklären? 03 03. 2020 20:42 #66130

Steinzeit-Astronom schrieb: Die Lösung liegt vielleicht irgendwo innerhalb der Plancklänge verborgen, wo Raum und Zeit statistisch verteilte Kapriolen machen.

Nö, die eine Lösung liegt einfach in den Schrittlängen von Läufer und Schildkröte und die damit verbundene unterschiedliche Quantisierung ihrer
Bewegung.

Vieleicht sollte man der Mathematik nicht mehr Bedeutung zuschreiben als ihr zukommt, die eine (gut strukturierte abstrakte) Sprache zu sein die einem Zweck dient.
Ich hoffe doch jedem der sich dieser Sprache bedient ist bewusst das es die idealisierten Punkte, Linien und Unendlichkeiten in der Realität nicht gibt.

assume good faith

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

assume good faith

Kann Mathematik wirklich das reale Universum erklären? 03 03. 2020 21:23 #66134

Merilix schrieb: Nö, die eine Lösung liegt einfach in den Schrittlängen von Läufer und Schildkröte und die damit verbundene unterschiedliche Quantisierung ihrer
Bewegung.

Hmm... es gibt doch nur nur eine Quantisierung, nämlich die Halbierung des jeweils verbliebenen Abstands, was zwangsläufig zu unendlich vielen solcher halbierter Abstände führt. Und alle müssen sozusagen besucht werden... unendlich viele immerhin. Oder hab ich dich da falsch verstanden?

Merilix schrieb: Vieleicht sollte man der Mathematik nicht mehr Bedeutung zuschreiben als ihr zukommt, die eine (gut strukturierte abstrakte) Sprache zu sein die einem Zweck dient.

Die Frage ist nur, ob die Sprache den Zweck überhaupt hinreichend erfüllen kann. Es gibt Ausdrücke in so mancher Sprache, die ihren Zweck, nämlich von anderen verstanden zu werden, einfach nicht hinreichend erfüllen können, weil sie in andere Sprachen nicht übersetzbar sind. Könnte sein, dass manche mathematischen Ausdrücke auch nicht in die Wirklichkeit übersetzbar sind (oder umgekehrt), obwohl es für uns so aussieht. Wir übersehen dann vielleicht gewisse, zum wahren Verständnis entscheidende Details wie z.B., dass evtl. sowohl der Raum als auch die Zeit irgendwie quantisiert und nicht kontinuierlich sind... obwohl schon Zenons Paradoxien sowas nahelegten.

Merilix schrieb: Ich hoffe doch jedem der sich dieser Sprache bedient ist bewusst das es die idealisierten Punkte, Linien und Unendlichkeiten in der Realität nicht gibt.

Das hoffe ich auch. Wenn man einen explizit danach fragt, wird er das sicher bejahen, aber bei der täglichen Anwendung der Sprache kann man's leicht vergessen, die genannten wichtigen Details folglich übersehen und so zu falschen Schlüssen kommen. So und so steht's doch in den Formlen, also kann's nicht anders sein... vielleicht ja doch, weil man die Formeln eben nicht direkt in die Wirklichkeit übertragen darf, ebenso wenig wie die "idealisierten Punkte, Linien und Unendlichkeiten".

Mathematik ist zum Verständnis der Physik sicher unbedingt notwendig, aber nicht zwangsläufig auch hinreichend, befürchte ich jedenfalls.
P.S.: Darum geht's ja gerade in der Ausgangsfrage: "Kann Mathematik wirklich das reale Universum erklären?"

Also sprach das Photon: Wo wir sind ist vorne! Und sollten wir mal hinten sein, dann ist hinten vorne!

Bitte Anmelden oder Registrieren um der Konversation beizutreten.

Also sprach das Photon: Wo wir sind ist vorne! Und sollten wir mal hinten sein, dann ist hinten vorne!
Powered by Kunena Forum